

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE In Mathematics B (4MB1) Paper 02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P69489A
Publications Code 4MB1_02_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If the final answer is wrong always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used.

If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

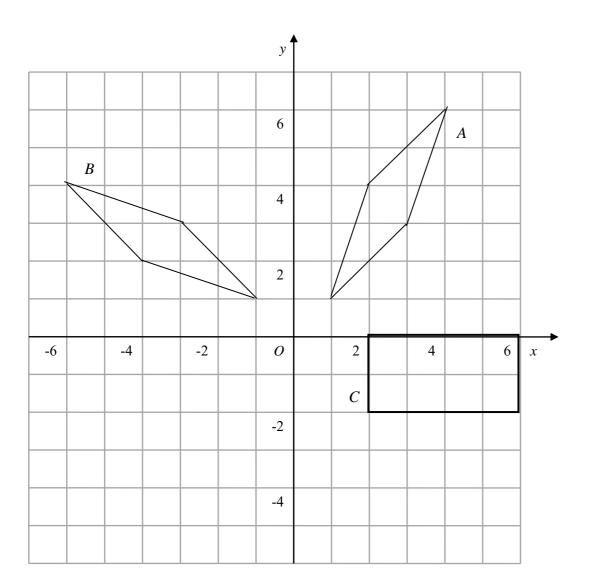
Question	Working	Answer	Mark	Notes
1	For this question we will allow the correct answer in any form(Allow incorrect standard form) in the table or in the			
	working. ISW ie ignore an	y incorrect rounding if a	correct n	nore accurate value is seen.
	1.23×10 ⁹		6	M1
	112000			
		11 000		A1 oe allow 10982. 14 written to at least 2 sf ISW
	1.61×10^{11}			M1 Do NOT allow for $16500 = \frac{1.61 \times 10^{11}}{\text{population}}$
	16500			population
		9 800 000		A1 oe allow 9757575.758 written to at least 2 sf ISW
	$7.67 \times 10^9 \times 11400$			M1 Do NOT allow for $11400 = \frac{\text{total GDP}}{7.67 \times 10^9}$
				7.67×10^9
		8.7×10^{13}		A1 oe allow 8.7×10^{13} written to at least 2 sf ISW
				Total 6 marks

Que	stion	Working	Answer	Mark	Notes
2	(a)(i)		q	3	B1
	(ii)		p, q, r, s, t		B1 condone a letter appearing more than once
	(iii)		<i>p</i> , <i>t</i>		B1 condone a letter appearing more than once
	(b)		$\{r\},\{p,r\},$	2	B2 for the 4 correct sets and no incorrect extra.
			$\{r, t\}, \{p, r, t\}$		B1 for (2 correct sets and no incorrect sets) or
					(3 or 4 correct sets and no more than 1 incorrect set)
					Condone missing or incorrect set brackets as long as sets are clearly
					distinguishable. Allow a letter appearing more than once
	(c)	Indicate only $\{r\}$ gives desired		2	M1ft either indicates just $\{r\}$ or ft their list from (b) ie lists their sets
		outcome			without p , q and t but do not ft if their answer for (b)
				_	intersection <i>B</i> is the empty set.
			1		A1ft their list from (b)
			$\frac{1}{4}$		number of their sets in (b) without p , q and t
					number of sets they have in (b)
					NB correct probability ¼ gains 2/2
					SC B1 for a probability of 0 or which follows from their part (b)
					Total 7 marks

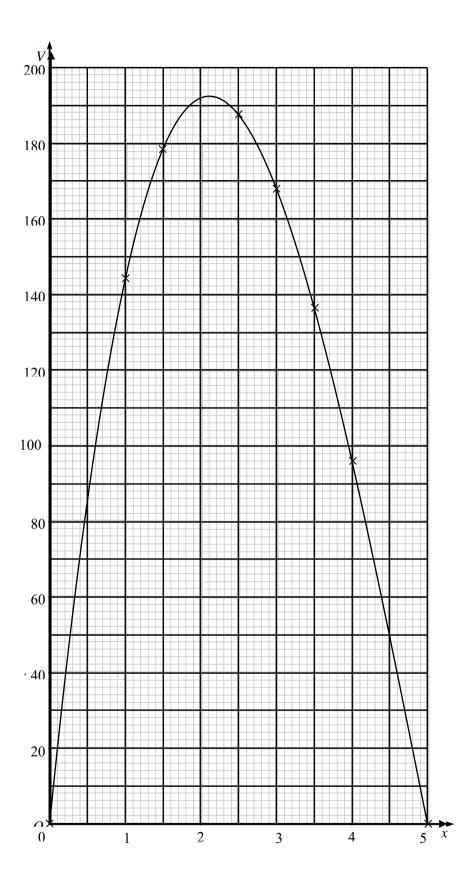
Ques	stion	Working	Answer	Mark	Notes
3	(a)	$2^x \times \left(2^2\right)^y = 2^7$		3	M1 for writing both 4 and 128 as powers of 2 with at least one correct. Implied by $2^x \times 2^{2y} = 2^7$
		$2^x \times 2^{2y} = 2^7$			M1 for 2^{2y} or 2^{x+2y} seen
		$2^{x+2y} = 2^7$	x + 2y = 7		A1 We must see $2^{x+2y} = 2^7$.
					SC Verification can get M1M1 A0
					M1 for $2^{7-2y} \times (2^2)^y = 2^7$ implied by $2^{7-2y} \times 2^{2y} = 2^7$
					M1 for $2^{7-2y} \times 2^{2y} = 2^7$
	(b)	$2^{3x} \div 2^{2y} = 2^5$		2	M1 express as powers of 2 eg $2^{3x} \times 2^{-2y} = 2^5$ or $2^{3x} = 2^{2y} \times 2^5$
		$2^{3x-2y} = 2^5$	3x - 2y = 5		A1 We must see $2^{3x-2y} = 2^5$ oe eg $2^{3x} = 2^{2y+5}$
					SC Verification can get M1A0 for $2^{5+2y} \div 2^{2y} = 2^5$
	(c)	4x = 12 or 8y = 16 or		3	M1 Forming any correct un-simplified equation in one variable eg
		$2^{x} \times 8^{x} = 128 \times 32 \text{ oe}$			$2^{x} \times \frac{8^{x}}{32} = 128 \text{ or } \left(\frac{128}{4^{y}}\right)^{3} = 32 \times 4^{4y} \text{ or } 3(7-2y) - 2y = 5$
					Maybe implied by either correct answer. Allow oe
			x=3		A1
			y=2		A1
					Total 8 marks

Ques	tion	Working	Answer	Mark	Notes
4	(a)		60≤ <i>t</i> <120	1	B1
	(b)	5×"5"+7×"20"+15×"45"+ 36×"90"+19×"180"+8×"300" [= 25 + 140 + 675 + 3240 + 3420 + 2400] = 9900		4	 M2 for correct calculation (need not be evaluated) If no working shown then figures must be correct Give bod if values in a list and a total given. (M1 for xf calculated and added for at least 3 class intervals where x is a number in the range (incl end points) OR correct mid-points used for at least 3 products but not added)
		" <u>9900"</u> 90			M1 dep on at least M1 previously scored. For dividing their sum by 90
			110		A1 cao
	(c)		w = 2	3	B1
		Area of bar for $10 \le t < 30 = \frac{9}{15} \times 7$ oe or Freq. densities = 15/30 and 7/20			M1
			h = 2.1		A1
					Total 8 marks

Question	Work	king	Answer	Mark	Notes
5	(a)	$12.5 \times 4.05 = 50.625$		4	M2 Any 2 valid areas $l \times w$ or $l \times h$ or $w \times h$ calculated
		$12.5 \times 3.05 = 38.125$			using $12 < l \le 12.5$ and $4 < w \le 4.05$ and $3 < h \le 3.05$
		4.05×3.05 [=12.3525]			(M1 Any 2 valid areas calculated using $11.5 \leqslant l \leqslant 12.5$
					and $3.5 \leqslant w \leqslant 4.5$ and $2.5 \leqslant h \leqslant 3.5$)
		$(12.5 \times 4.05 + 12.5 \times 3.05 + 4.05 \times 3.05) \times 2$			M1 Correct expression for total surface area
					$l \times w + l \times h + w \times h$ using
		202 207		_	$11.5 \leqslant l \leqslant 12.5 \text{ and } 3.5 \leqslant w \leqslant 4.5 \text{ and } 2.5 \leqslant h \leqslant 3.5$
		= 202 .205	No		A1 correct area calculated (awrt 202)
					AND conclusion must be seen
					Calculation must be seen and use the correct bounds. Allow 12.49, 3.049, 4.049
	(b)	11.5, 12.5, 3.95, 4.05, 2.95, 3.05		4	M1 Any 3 of these values seen in the question (parts (a) and (b)) Allow 12.49, 3.049, 4.049
		$\sqrt{11.5^2 + 3.95^2 + 2.95^2}$			M2 use of 3-D Pythagoras using LB $11.5 \le l < 12$ and
		V11.5 + 5.75 + 2.75			$3.95 \leqslant w < 4.0 \text{ and } 2.95 \leqslant h < 3$
					(M1 correct use of 3-D Pythagoras using
					$11.5 \leqslant l \leqslant 12.5 \text{ and } 3.5 \leqslant w \leqslant 4.5 \text{ and } 2.5 \leqslant h \leqslant 3.5$
			12.5		Alawrt 12.5 Calculation must be seen and use the correct
			(cm)		bounds
					NB if they are not using bounds at all ie use 12, 4 and 3
					In (a) they get 192 and in (b) they get 13
					Total 8 marks


Ques	tion	Working	Answer	Mark	Notes
6	(a)	$\tan 16.9 = \frac{QP}{1000}$ or oe		2	M1 suitable equation for height, eg $tan 16.9 = QP$ or
		$\frac{1000}{1000}$ or $\frac{1}{1000}$			QP 1 cos16.0 – 1
					$\frac{QP}{\sin 16.9} = \frac{1}{\sin 73.1}$ or $\cos 16.9 = \frac{1}{\sqrt{OP^2 + 1}}$
					OP
					Allow with 1 instead of 1000 eg $\tan 16.9 = \frac{QP}{1}$ Allow any letter
					for QP Allow other correct methods
		$1000 \times \tan 16.9$ or awrt 303.8	304		A1 answer given so M1 must be awarded. Must be using 1000 or
					multiplying by 1000 at some point. For rearranging to find a correct
					expression followed by 304 or an awrt 304 eg $\frac{1000 \sin 16.9}{\sin 73.1}$ = 304 or
					$(1)^2$ 1 1000 202.0
					$\sqrt{\left(\frac{1}{\cos 16.9}\right)^2 - 1 \times 1000} = 303.8 \text{ oe}$
					NB Could get answer from incorrect working so need to award the
					M1 to gain the A mark ie You must see a correct trigonometric.
					equation
	(b)	$2000 \times \tan 8.2 [= 288.20]$ or		5	M1 Allow awrt 288 or 0.288
		$2 \times \tan 8.2 [= 0.28820]$			Allow other correct methods eg $\sqrt{\left(\frac{2000}{\cos 8.2}\right)^2 - 2000^2}$ or $\frac{2000 \sin 8.2}{\sin 81.8}$
		[CB =] 304 - "288" [= 15.79] or			M1 dep on 1st M1 being awarded. Allow awrt 16 or 0.016
		0.304 – "0.288" [= 0.01579]			
		[AB=] $\sqrt{1000^2 + 2000^2}$ [= 2236.06]			M1 For using Pythagoras to find AB Allow awrt 2240 or 2.24
		or $\sqrt{1+2^2}$ [= 2.236]			
		"15.79"		1	M1 dep on 2 nd and 3 rd M1 being awarded
		$\tan \theta = \frac{"15.79"}{"2236.06"}$ oe			
			0.4		A1 awrt 0.4
					Total 7 marks

Ques	tion	Working	Answer	Mark	Notes
7	(a)	$\overrightarrow{DC} = -\mathbf{b} + \mathbf{a} + \mathbf{b} - \frac{1}{3}\mathbf{a}$		2	M1 Correct method to find \overrightarrow{DC} or \overrightarrow{CD} $ \begin{bmatrix} \overrightarrow{CD} = \\ CD = \end{bmatrix} - \mathbf{b} + \frac{1}{3}\mathbf{a} - \mathbf{a} + \mathbf{b} $
			$\frac{2}{3}$ a [: parallel to <i>DC</i>]		A1 M1 must be awarded Allow $-\frac{2}{3}\mathbf{a}$
	(b)	$\overrightarrow{BE} = k \overrightarrow{BC} \text{ or}$ $BE = k \left(\mathbf{b} - \frac{1}{3} \mathbf{a} \right)$ $\lambda \mathbf{b} - \mathbf{a} = k \left(\mathbf{b} - \frac{1}{3} \mathbf{a} \right) \text{ or}$ $AB : DC = 1 : 2/3 \text{ oe}$		2	M1 allow $\frac{AB}{DC} = \frac{3}{2}$ oe Allow other methods eg $CE = nBE$ and $CE = CB + BE$
			$\lambda = 3$		A1 Correct answer implies M1
	(c)	$\left(\frac{"2"}{"3"}\right)^2 \text{ or } \left(\frac{"2"}{"3"}\right)^2 x \text{ oe}$		3	M1ft for $\left(\frac{\text{"their }\lambda\text{"}-1}{\text{"their }\lambda\text{"}}\right)^2$ Allow $\left(\frac{\text{"their }\lambda\text{"}}{\text{"their }\lambda\text{"}-1}\right)^2$ for the SF
		$1 - \left(\frac{"2"}{"3"}\right)^2 \text{ or } x - \left(\frac{"2"}{"3"}\right)^2 x$ or $\frac{x - P}{x} = \left(\frac{"2"}{"3"}\right)^2 \text{ oe}$			M1ft for $1 - \left(\frac{\text{"their } \lambda \text{"}-1}{\text{"their } \lambda \text{"}}\right)^2$ or $x - (n)^2 x$ where $0 < n < 1$
			$x - \left(\frac{"2"}{"3"}\right)^2 x \left[= \frac{5}{9} x \right]$		Alft (If ft both M marks must be awarded) Allow a correct un-simplified expression eg $x - \left(\frac{2}{3}\right)^2 x$ ISW
					Total 7 marks


Question	Working	Answer	Mark	Notes
8 (a)	$[h=]\sqrt{0.9^2 - \left(\frac{2.1 - 1.2}{2}\right)^2} = \sqrt{0.9^2 - 0.45^2} [= 0.7794]$		3	M1 correct method to find h awrt 0.78Allow other method eg $h = 0.9 \sin 60 \ h = 0.9 \cos 30$
	$\frac{1}{2}$ ×(2.1+1.2)×"0.78"			M1 dep on 1 st M1 being awarded ft their value of $h \neq 0.9$ Correct method to find the area eg $1.2 \times "0.78" + 2 \times 0.5 \times 0.45 \times "0.78"$
		1.29		A1 awrt 1.29 (condone 1.28 from correct working) actual 1.286
<u>'</u>	There may be oth	er correct i	nethods (for part(b))
(b)	Volume of 1 bed = "1.29"×0.1 or "1.29"×10		4	M1 for multiplying by 10 or 0.1 Allow if (a) \times by 10^n if not part of a unit conversion
	$\frac{"1.29 \times 0.1" \times 6}{50}$ or $\frac{"1.29 \times 10" \times 6}{50}$			M1 for multiplying by 6 and dividing by 50. Allow if multiplied by a power of 10
	$\frac{1.29 \times 0.1 \times 6}{50}$ or $\frac{12900 \times 10 \times 6}{50}$			A1 condone use of 1.28 or12800
	Eg $\frac{1.29 \times 0.1 \times 6}{50} \times 1000 \text{ or } \frac{12900 \times 10 \times 6}{50} \times \frac{1}{10000} \text{ or } \frac{0.774}{50} \times 1000 \text{ or } \frac{0.774}{0.05}$	15.4 ∴16		A1 awrt 15.4/15.5 and the statement 16 needed
ALT 1	Volume of 1 bed = "1.29"×0.1 or "1.29"×10			M1 for multiplying by 10 or 0.1
	"1.29×0.1"×6×1000			M1 correct method to find the total compost in litres
	awrt 770 litres			A1 awrt 770
	$16 \times 50 = 800$ and $15 \times 50 = 750$ litres	∴16		A1 must have awrt 770, 800 and 750 plus conclusion Sight of 770, 800 and 750 implies M1M1A1
ALT 2	Volume of 1 bed = "1.29"×0.1 or "1.29"×10			M1 for multiplying their answer to (a) by 10 or 0.1
	"1.29×10"×10000×6			M1 correct method to find the total compost in cm ³
	awrt 770000 cm ³			A1 awrt 770000
	$16 \times 50 \times 1000 [= 800000]$ and	∴16		A1 must have awrt 770000, 800000 and 750000 plus
	$15 \times 50 \times 1000 [= 750000]$			conclusion. Sight of 770000, 800000 and 750000 implies M1M1A1

		1		
ALT 3	Volume of 1 bed = "1.29"×0.1 or "1.29"×10		ĺ	M1 for multiplying by 10 or 0.1
	"1.29×0.1"×6 [=0.77] and $\frac{50\times1000}{100^3}$ [=0.05]			M1 multiply by 6 to find the total compost in m ³ and correct method to find the compost in 1 bag in m ³
	0.77 16 and 0.05			A1 awrt 0.77
	$16 \times 0.05 [= 0.8]$ and $15 \times 0.05 [= 0.75 \text{ m}^3 \text{per bag}]$	∴16		A1 must have 0.77, 0.8 and 0.75 plus conclusion Sight of 0.77, 0.8 and 0.75 implies M1M1A1
				organ or on, i, one was one ampires in institution
ALT 4	16 "1.29" or 15 "1.29"			M1 dividing number of bags by their answer to (a) Allow if (a) \times by 10^n
	$\frac{16 \times 50}{6 \times "1.29"}$ or $\frac{15 \times 50}{6 \times "1.29"}$			M1 for multiplying by 50 and dividing by 6. Allow if multiplied by a power of 10
	10.335 or 9.689			A1 awrt 10.3/10.4 or awrt 9.7
	10.3 and 9.689	∴16		A1 awrt 10.3/10.4 and awrt 9.7 plus conclusion
(c)	60° or 30° or 120 ° used or 1.2 used as hypotenuse or these may be seen in correct place on diagram		4	M1 Implied by a correct value of <i>r</i> or correct method to find <i>r</i>
	[r=] $0.6 \times \tan 60$ or $\sqrt{1.2^2 - 0.6^2}$ or $\frac{0.6}{\tan 30}$ or			M1 oe allow other correct methods eg $\sqrt{0.6^2 + 0.6^2 + 2 \times 0.6^2 \cos 120} \text{ or } 1.05 \tan 60 - 0.9974 \text{ or } 1.05 \tan 60 = 0.9974 \text$
	1.2sin 60 [= $\frac{3\sqrt{3}}{5}$ = 1.039]			$\frac{1.2 \times \sin 120}{2 \sin 30}$ Awrt 1.04 if no working shown do not ISW
	$\pi \times "1.039"^2$			M1 using the correct formula for area of a circle $(\pi \times "r"^2)$
				where $0 < r < 2.1$
		3.39		A1 awrt condone 3.4 or 3.40
				Total 11 marks

Que	stion	Working	Answer	Mark	Notes
9	(a)		A correctly	1	B1
			drawn		
	(b)		B correctly	2	B2ft follow through their shape
			drawn		B1ft for 3 points correct. (or a shape the correct size and shape
			(-1, 1), (-4, 2),		with the correct orientation or
			(-6, 4) and		shape A rotated 90° clockwise about $(0,0)$ ie coordinates
			(-3, 3)		(1,-1), (4,-2), (6,-4) and $(3,-3) $)
	(c)	$(1 \ 3)(-1 \ -4 \ -6 \ -3)$		3	M1ft their B. For intention to multiply matrices the right way
		$\begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & -4 & -6 & -3 \\ 1 & 2 & 4 & 3 \end{pmatrix}$			round. At least one co-ordinate pair the right way round in the
					2^{nd} matrix. Implied by trapezium C correctly drawn. Allow
					for $\begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ using any point
					$\begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$ using any point
		(2 2 6 6)		1	M1ft dep on M1. An attempt to find all 4 points with at least 2
		$ \begin{pmatrix} 2 & 2 & 6 & 6 \\ 0 & -2 & -2 & 0 \end{pmatrix} $			correct coordinates (x, y) gained. ft their points. Implied by 2
		$\begin{pmatrix} 0 & -2 & -2 & 0 \end{pmatrix}$			correct points plotted. Pairs can be in any order. Implied by
					trapezium C drawn correctly.
			C correctly		A1
			drawn		
			(2,0), (2,-2),		
			(6, -2) and		
			(6, 0)		
					$\begin{bmatrix} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{M} \mathbf{A} \mathbf{A} \mathbf{C} \mathbf{M} \mathbf{C} \mathbf{M} \mathbf{A} \mathbf{C} \mathbf{M} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{M} \mathbf{A} \mathbf{C} \mathbf{M} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$
					SC for MA allow $\begin{pmatrix} 4 & -14 & 22 & 6 \\ 2 & 6 & 10 & 0 \end{pmatrix}$ all 4 points with at least
					2 correct coordinates gained M0M1A0
	(d)		-2	1	B1
	(e)	Area of $A = 5 \times 3 - 2 \times (2 + 2 + 1.5)$		2	M1 finding "area of their C"÷"2" or
		or "2×4"÷2 oe			finding the area of their A eg $0.5\sqrt{2^2+2^2} \times \sqrt{1^2+1^2}$
					1 1 2 4 3 1 1 5 (4 12 12 12 12 12 12 12 12 12 12 12 12 12
					$ \left \begin{array}{cccc} \frac{1}{2} \begin{vmatrix} 1 & 2 & 4 & 3 & 1 \\ 1 & 4 & 6 & 3 & 1 \end{vmatrix} \right = \frac{1}{2} \left[\left(4 + 12 + 12 + 3 \right) - \left(2 + 16 + 18 + 3 \right) \right] $
			4 (cm ²)	1	A1 –4 scores M1A0 condone lack of units. NB answer of 4
					gains 2/2
					Total 9 marks

Ques	tion	Working	Answer	Mark	Notes	
10	(a)	V = x(10-2x)(20-2x)		2	M1 Condone $x(10-x)(20-x)$	
		$x(200-40x-20x+4x^2)$ or	$V = 4x^3 - 60x^2 + 200x$	-	A1 must see one of the 2 given lines of working followed by the correct answer.	
		$\left(200x - 40x^2 - 20x^2 + 4x^3\right)$				
	(b)	$\left[\frac{\mathrm{d}V}{\mathrm{d}x} = \right] 12x^2 - 120x + 200$		4	M1 Attempt to differentiate at least 1 term correct	
		$12x^2 - 120x + 200 = 0$ oe			M1 At least 2 terms correct and equated to zero	
		$120 \pm \sqrt{120^2 - 4 \times 12 \times 200}$			M1 A correct method to solve their 3 term quadratic equation.	
		$x = \frac{120 \pm \sqrt{120^2 - 4 \times 12 \times 200}}{2 \times 12}$			Implied by awrt 2.11 or awrt 7.89 or $\frac{15 \pm 5\sqrt{3}}{3}$	
			2.11		A1 awrt 2.11 Allow $\frac{15-5\sqrt{3}}{3}$ do not accept 7.89 given. If correct	
					answer seen ignore subsequent rounding.	
	(c)	168, 96		2	B2	
	(d)			2	B2 Fully correct graph. Allow max at $1.5 \le x \le 2.5$ (Allow if	
					curve goes through points even if you can't see the point plotted	
					(B1 All points plotted correctly or 4 points plotted correctly with	
					curve joining all their plotted points)	
	(e)	Tangent drawn at 1.5		2	M1 attempt to draw tangent at 1.5	
			40 - 55		A1 must see tangent drawn.	
	(f)	y = 200 - 25x		3	M1 for indicating that $200 - 25x$ is the line. Implied by correct line drawn	
		line $y = 200 - 25x$ drawn]	A1 line through (1, 175) and (4,100)	
			1.3, 3.9	1	A1 correct line must be drawn allow ± 0.1	
					Total 15 marks	

Quest	tion	Working		Answer	Mark	Notes
11	(a)	$3\times3+1$			2	M1 implied by correct value
		3-1				
				5		A1
	(b)			1	1	B1
	(c)	xy - y = 3x + 1	xy - y = 3x + 1		4	M1 For a correct expression. May use 2 other letters eg $yx - x = 3y + 1$
		xy - 3x = y + 1	-y-1=3x-xy			M1 Collect all of their x terms on one side. (must be more than one) Allow 1 sign error. Condone both sides being over x or y eg $\frac{-y-1}{x} = \frac{3x-xy}{x}$ May use other letters eg $yx-3y=x+1$
		x(y-3) = y+1	-y-1=x(3-y)			M1 Isolating term in x ie taking x out as common factor so it only appears once in the equation
		$\frac{x+1}{x-3}$	$\frac{-x-1}{3-x}$	$\frac{x+1}{x-3}$		A1 oe eg $\frac{-x-1}{3-x}$ Must be in terms of x
	(d)	$[g(a) =] \frac{\frac{a-1}{3a+1} + 1}{\frac{a-1}{3a+1} - 3} \text{ or } \frac{3g(a)}{g(a)}$ $[g(a) =] \frac{a-1+3a+1}{a-1-9a-3} \left[= \frac{a-1+3a+1}{a-1-9a-3} \right] = \frac{a-1+3a+1}{a-1-9a-3}$			7	M1 ft Their part (c) using $g(a) = f^1(fg(a))$ ie substituting $\frac{a-1}{3a+1}$ into their answer to (c) Allow any letter or substituting $g(x)$ into $f(x)$ and equating to $fg(x)$ [Allow g or any letter for $g(x)$ but must be different to the letter used in the inverse of $f(x)$] M1 dep on 1 st M1 and the answer to (c) being of the form $\frac{ax \pm b}{cx \pm d}$ for removing nested fractions. or removing fractions and
		or $8g(x)x + 4g(x) = -4x$				$cx \pm d$ collecting the g(x) terms on one side and the x terms on the other side Allow any letter and 1 sign/numerical error
		$[gf(a)] = \frac{-\frac{3a+1}{a-1}}{2\left(\frac{3a+1}{a-1}\right)+1}$				M1ft follow through their $g(a)$ For substituting $\frac{3a+1}{a-1}$ into their $g(a)$ Allow any letter
		$[gf(a)] = \frac{-3a-1}{6a+2+a-1} \left[= \frac{-3a-1}{6a+2+a-1} \right]$	$\frac{-3a-1}{7a+1}$			A1 A correct expression for gf(a) without nested fractions. Allow any letter
		$\frac{a-1}{3a+1} = \frac{-3a-1}{7a+1}$				M1 dep on 3^{rd} M1 being awarded. Forming an equation by equating their $gf(a)$ to $fg(a)$. Allow any letter
		(a-1)(7a+1)=(-3a-1)	(3a+1)			A1 removing the fractions to gain a correct equation. Allow any letter. If this line is not seen it may implied by the final A1
				[a =] 0		A1 from correct working.
						Total 14 marks